COURSE NAME : DIPLOMA IN MECHANICAL AND PRODUCTION

ENGINEERING/PRODUCTION TECHNOLOGY

COURSE CODE : ME/PT/PG/MH/MI

SEMESTER : FIFTH FOR ME/PG/PT AND SIXTH FOR MH/MI

SUBJECT TITLE : MEASUREMENTS AND CONTROL

SUBJECT CODE:

Teaching and Examination Scheme

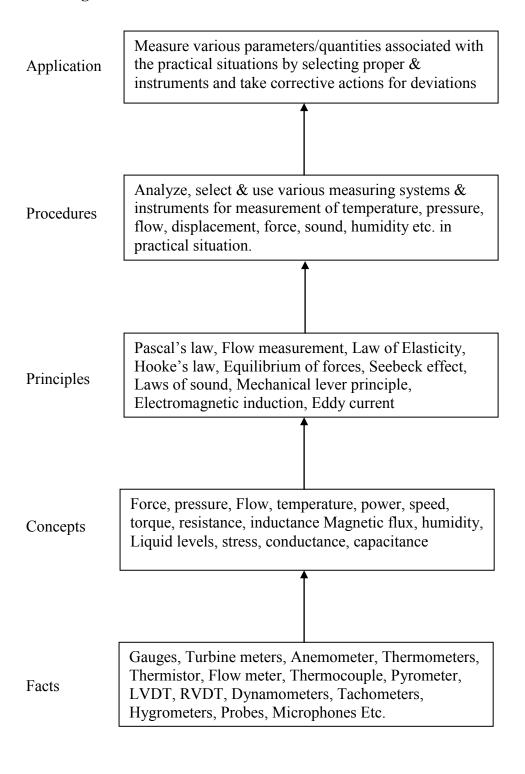
Teaching Scheme			Examination Scheme					
TH	TU	PR	PAPER HRS	TH	PR	0R	TW	TOTAL
03		02	03	100			25@	125

@-Internal assessment TH-Theory PR- practical TW-Term work

NOTE:

- > Two tests each of 25 marks to be conducted as per the schedule given by MSBTE.
- > Total of tests marks for all theory subjects are to be converted out of 50 and to be entered in mark sheet under the head Sessional Work. (SW)

Rationale:


The art of measurement plays an important role in all branches of engineering. With advances in technology, measurement techniques have also taken rapid strides, with many types of instrumentation devices, innovations, refinements. The course aims at making a Mechanical Engineering student familiar with the principles of instrumentation, transducers & measurement of non electrical parameters like temperature, pressure, flow, speed, force and stress and methods of control systems for engineering applications.

Objectives:

Student will be able to:

- 1. Understand the principle of operation of an instrument.
- 2. Appreciate the concept of calibration of an instrument.
- 3. Select Suitable measuring device for a particular application.
- 4. Identify different types of errors.

Learning Structure:

Contents: Theory

Topic and content	Hours	Marks
1: Introduction and significance of Measurement 18 marks		
Specific objectives- The students will be able to understand Terminology related to measurement Various types of errors Concept of transducers Contents: 1.1 Types of measurement, classification of instruments Static terms and characteristics- Range and Span, Accuracy and Precision, Reliability, Calibration, Hysteresis and Dead zone, Drift, Sensitivity, Threshold and Resolution, Repeatability and Reproducibility, Linearity. 1.2 Dynamic characteristics- Speed of response, Fidelity and Dynamic errors, Overshoot. 06 marks 1.3 Measurement of error- Classification of errors, environmental errors, signal transmission errors, observation errors, operational errors. 04 marks 1.4 Transducers: Classification of transducers, active and passive, resistive, inductive, capacitive, piezo-resistive, thermo resistive 08 marks	08	18
2: Displacement and Pressure measurement Specific objectives- The students will be able to ➤ Explain working of displacement transducers ➤ Explain construction and working of low pressure and high pressure measuring instruments. Contents: 2.1 Displacement Measurement Capacitive transducer, Potentiometer, LVDT, RVDT, Specification, selection & application of displacement transducer. Optical measurement scale and encoders 08 Marks 2.2Pressure Measurement Low pressure gauges- McLeod Gauge, Thermal conductivity gauge, Ionization gauge, Thermocouple vacuum gauge, Pirani gauge. High Pressure gauge-Diaphragm, Bellows, Bourdon tube, Electrical resistance type, Photoelectric pressure transducers, piezoelectric type, Variable capacitor type 10 Marks	10	18
3: Temperature measurement Specific objectives- The students will be able to ➤ Explain electrical and non electrical methods of temperature measurements ➤ Describe high temperature measuring instruments such as	06	16

ny mana at ana		
pyrometers		
Content:		
3.1 Non-electrical methods - Bimetal , Liquid in glass		
thermometer and Pressure thermometer 04 Marks		
3.2 Electrical methods - RTD, Platinum resistance thermometer,		
Thermistor, Thermoelectric methods - elements of		
thermocouple, Seebek series, law of intermediate		
temperature, law of intermediate metals, thermo emf		
measurement. 08 Marks		
3.3 Pyrometers - radiation and optical 04 Marks		
on 1 1/1 and option		
4 :Flow measurements 12 Marks		
Specific objectives-		
The students will be able to		
Describe variable area, variable velocity flow meters		
> Special flow meters-electro-magnetic and ultrasonic flow		
meter		
	06	10
Content:	06	12
4.1Variable area meter -Rota meter, Variable velocity meter-		
Anemometer 06 Marks		
4.2 Special flow meter- Hot wire anemometer, Electromagnetic		
flow meter, Ultrasonic flow meter ,Turbine meter ,Vortex		
shedding flow meter 06 Marks		
5 :Miscellaneous Measurement 16 Marks		
Specific objectives-		
The students will be able to		
Explain characteristic of sound and Measurement of sound		
intensity		
➤ Measure shaft power		
Describe contact and non contact type of speed measuring		
instruments		
Explain working of strain gauges	08	16
Content:		
Content: 5.1 Introduction to sound massurament and study of Electro		
5.1 Introduction to sound measurement and study of Electro		
dynamic microphone and Carbon microphone.		
5.2 Humidity measurement –Hair hygrometer, Sling		
psychrometer, 5.3 Liquid level measurement direct and indirect methods		
5.3 Liquid level measurement – direct and indirect methods.		
5.4 Force & Shaft power measurement -Tool Dynamometer		
(Mechanical Type), Eddy Current Dynamometer, Strain		
Gauge Transmission Dynamometer.		
5.5 Speed measurement -Eddy current generation type		
be been measurement Easy current generation type		

Tachometers, Revolution counter & timer, Sli Tachometer, Electrical Tachometers, Contact tachometer, Inductive Pick Up, Capacitive Pic Stroboscope 5.6 Strain Measurement-Stress-strain relation, ty gauges, strain gauge materials, resistance strai bonded and unbounded, types(foil, semicondu wound gauges), selection and installation of st load cells, rosettes.	less Electrical ek Up, ypes of strain in gauge- ictor, wire train gauges		
 6: Control systems Specific objectives- The students will be able to ➤ Know various types of control systems and the ➤ State field applications of control systems Contents: 6.1 Block diagram of automatic control system, system, open loop system, feed back control system forward control system, servomotor mechanism, 6.2 Comparison of hydraulic, pneumatic, electrocontrol systems, 6.3 Control action: Proportional, Integral, derivative, PI,PD, PID 6.4 Applications of measurements and control for boilers, air conditioners, motor speed control 	closed loop em, feed 06 marks onic 06 marks	10	20

Note- Numerical based on chapter 1,4,5 only

Practical:

Skills to be developed:

Intellectual Skills:

- 1. Analyze the result of calibration of thermister
- 2. Interpret calibration curve of a rotameter
- 3. Evaluate the stress induced in a strain gauge
- 4. Verify the characteristics of photo transister and photo diode

Motor Skills:

- 1. Test and calibration of a thermocouple
- 2. Handle various instruments
- 3. Draw the calibration curves of rotameter and thermister
- 4. Measure various parameters using instruments

List of Practical:

- 1 Understand the methods of measurements and instrument characteristics with demonstration of any one measuring device.
- 2 Displacement measurement by inductive transducer (LVDT)
- 3 Measurement of negative pressure using McLeod gauge / Bourdon tube pressure gauge. Conversion of pressure in different units.
- 4 Measurement of temperature by using Thermocouple.
- 5 Measurement of flow by using rotameter.
- 6 Measurement of strain by using a basic strain gauge and verify the stress induced
- 7 Speed Measurement by using Stroboscope / Magnetic / Inductive Pick Up.
- 8 Measurement of force & weight by using a load cell.
- 9 Liquid Level Measurement by using Capacitive Transducer system.
- 10 Study of control system with one suitable application (boiler) arranging industrial visit at sugar factory / paper mill / textiles / food processing industry.
- 11 Mini project-A group of 4 students shall take a mini project of searching information about advanced instrumentation / control system using internet and submits its report. Use of this knowledge in project(6th Sem) is highly appreciable.
- 12 Visit various departments/laboratories in own institute and understand how the measurement devices are fitted on machines/equipments, the procedure of measurement and calibration. (viz. Applied mechanics/ Electronics/ Instrumentation dept)

Learning Resources:

Books:

Sr. No.	Author	Title	Publication
01	D.S.Kumar	Mechanical Measurements & Control	Metropolitan Publications, New Delhi
02	R.K.Jain	Mechanical & Industrial Measurements	Khanna Publications, New Delhi
03	A.K.Sawhney	Mechanical Measurements & Instrumentation	Dhanpat Rai & Sons, New Delhi.
04	E. O. Doebelin	Measurement Systems	Tata McGraw Hill Publications
05	R.V. Jalgaonkar	Mechanical Measurement & Control	Everest Publishing House, Pune
06	C.S. Narang	Instrumentation Devices & Systems	Tata McGraw Hill Publications
07	B.C.Nakra and K.K.Chaudhary	Instrumentation, Measurement and Analysis	Tata Mc Graw Hill Publication

08	Thomas Beckwith	Mechanical Measurement	Pearson Education
09	James W Dally	Instrumentation for Engg. Measurement	Wiley India

Curriculum revision project 2012 LIST OF EQUIPMENTAND MACHINERY

(Essential equipment/hand tools required for conducting practical's)

Name of course/Department:-Mech. Engg. Dept.
 Name of laboratory: Measurement and control lab.

Sr.	Name of Equipment.	Technical	Minimu	Remark if any
No.		Specifications	m	
			Qty./No's	
			required	
1	Displacement	Inductive sensor with	One	4-5 setups must
	measurement using	micrometer head for		be kept ready
	inductive	displacement		for 4-5 weeks.
	transducer(LVDT)	measurement		A Group of 5-6
2	McLeod gauge with	McLeod gauge	One	students must
	high vacuum pump	With arrangement for		do practical on
	/Bourdon tube trainer	high vacuum pump		each setup in
3	Temperature	Thermocouple	One	rotation.
	measurement using	assembly with heating		
	Thermocouple	arrangement		
		Display 3.5 digital		
		display		
4	Flow measurement	Rotameter trainer with	One	
	using Rotameter	motor pump tank with		
		water recycling		
		arrangement		
5	Strain gauge	Sensor- 4 arm bridge	One	Advance
	trainer(strain / force	with strain gauge		planning
	measurement)	mounted on canti-lever		before
		capacity – 2 kg.		commencing of
		Display- 3.5 digital		semester is
		display		highly
6	Stroboscope	Range upto 5000 RPM	One	appreciable.
		Display –LED digital		One lab
7	Inductive pick up for	Sensor – inductive	One	common for
	speed measurement	Variable speed motor		measurement
		arrangement 3.5 digital		for all
		display	_	disciplines
8	Loadcell	Sensor- 4 arm bridge	One	with multiple
		with strain gauge		setups is highly
		capacity – 2 kg.		appreciable
		Display- 3.5 digital		
		display	_	
9	Liquid level	Sensor –capacitive type	One	

measurement using	with glass jar fitted	
capacitive system	with water tank 3.5	
	digital display	